Edexcel FM2 (Further Mechanics 2) Specimen

Question 1
View details
  1. A flag pole is 15 m long.
The flag pole is non-uniform so that, at a distance \(x\) metres from its base, the mass per unit length of the flag pole, \(m \mathrm {~kg} \mathrm {~m} ^ { - 1 }\) is given by the formula \(m = 10 \left( 1 - \frac { x } { 25 } \right)\). The flag pole is modelled as a rod.
  1. Show that the mass of the flag pole is 105 kg .
  2. Find the distance of the centre of mass of the flag pole from its base.
Question 2
View details
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f06704e5-454c-41c1-9577-b1210f60480d-04_655_643_207_639} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A hollow right circular cone, of base diameter \(4 a\) and height \(4 a\) is fixed with its axis vertical and vertex \(V\) downwards, as shown in Figure 1. A particle of mass \(m\) moves in a horizontal circle with centre \(C\) on the rough inner surface of the cone with constant angular speed \(\omega\). The height of \(C\) above \(V\) is \(3 a\).
The coefficient of friction between the particle and the inner surface of the cone is \(\frac { 1 } { 4 }\). Find, in terms of \(a\) and \(g\), the greatest possible value of \(\omega\).
Question 3
View details
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f06704e5-454c-41c1-9577-b1210f60480d-06_608_924_226_541} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} A uniform solid cylinder has radius \(2 a\) and height \(h ( h > a )\).
A solid hemisphere of radius \(a\) is removed from the cylinder to form the vessel \(V\).
The plane face of the hemisphere coincides with the upper plane face of the cylinder.
The centre \(O\) of the hemisphere is also the centre of the upper plane face of the cylinder, as shown in Figure 2.
  1. Show that the centre of mass of \(V\) is \(\frac { 3 \left( 8 h ^ { 2 } - a ^ { 2 } \right) } { 8 ( 6 h - a ) }\) from \(O\). The vessel \(V\) is placed on a rough plane which is inclined at an angle \(\phi\) to the horizontal. The lower plane circular face of \(V\) is in contact with the inclined plane. Given that \(h = 5 a\), the plane is sufficiently rough to prevent \(V\) from slipping and \(V\) is on the point of toppling,
  2. find, to three significant figures, the size of the angle \(\phi\).
Question 4
View details
  1. A car of mass 500 kg moves along a straight horizontal road.
The engine of the car produces a constant driving force of 1800 N .
The car accelerates from rest from the fixed point \(O\) at time \(t = 0\) and at time \(t\) seconds the car is \(x\) metres from \(O\), moving with speed \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\). When the speed of the car is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), the resistance to the motion of the car has magnitude \(2 v ^ { 2 } \mathrm {~N}\). At time \(T\) seconds, the car is at the point \(A\), moving with speed \(10 \mathrm {~ms} ^ { - 1 }\).
  1. Show that \(T = \frac { 25 } { 6 } \ln 2\)
  2. Show that the distance from \(O\) to \(A\) is \(125 \ln \frac { 9 } { 8 } \mathrm {~m}\).
Question 5
View details
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f06704e5-454c-41c1-9577-b1210f60480d-12_693_515_210_781} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} A shop sign is modelled as a uniform rectangular lamina \(A B C D\) with a semicircular lamina removed. The semicircle has radius \(a , B C = 4 a\) and \(C D = 2 a\).
The centre of the semicircle is at the point \(E\) on \(A D\) such that \(A E = d\), as shown in Figure 3.
  1. Show that the centre of mass of the sign is \(\frac { 44 a } { 3 ( 16 - \pi ) }\) from \(A D\). The sign is suspended using vertical ropes attached to the sign at \(A\) and at \(B\) and hangs in equilibrium with \(A B\) horizontal. The weight of the sign is \(W\) and the ropes are modelled as light inextensible strings.
  2. Find, in terms of \(W\) and \(\pi\), the tension in the rope attached at \(B\). The rope attached at \(B\) breaks and the sign hangs freely in equilibrium suspended from \(A\), with \(A D\) at an angle \(\alpha\) to the downward vertical. Given that \(\tan \alpha = \frac { 11 } { 18 }\)
  3. find \(d\) in terms of \(a\) and \(\pi\).
Question 6
View details
  1. A small bead \(B\) of mass \(m\) is threaded on a circular hoop.
The hoop has centre \(O\) and radius \(a\) and is fixed in a vertical plane.
The bead is projected with speed \(\sqrt { \frac { 7 } { 2 } g a }\) from the lowest point of the hoop.
The hoop is modelled as being smooth.
When the angle between \(O B\) and the downward vertical is \(\theta\), the speed of \(B\) is \(v\).
  1. Show that \(v ^ { 2 } = g a \left( \frac { 3 } { 2 } + 2 \cos \theta \right)\)
  2. Find the size of \(\theta\) at the instant when the contact force between \(B\) and the hoop is first zero.
  3. Give a reason why your answer to part (b) is not likely to be the actual value of \(\theta\).
  4. Find the magnitude and direction of the acceleration of \(B\) at the instant when \(B\) is first at instantaneous rest.
Question 7
View details
  1. Two points \(A\) and \(B\) are 6 m apart on a smooth horizontal surface.
A light elastic string of natural length 2 m and modulus of elasticity 20 N , has one end attached to the point \(A\). A second light elastic string of natural length 2 m and modulus of elasticity 50 N , has one end attached to the point \(B\). A particle \(P\) of mass 3.5 kg is attached to the free end of each string.
The particle \(P\) is held at the point on \(A B\) which is 2 m from \(B\) and then released from rest.
In the subsequent motion both strings remain taut.
  1. Show that \(P\) moves with simple harmonic motion about its equilibrium position.
  2. Find the maximum speed of \(P\).
  3. Find the length of time within each oscillation for which \(P\) is closer to \(A\) than to \(B\).