CAIE FP2 (Further Pure Mathematics 2) 2019 November

Question 1 5 marks
View details
1 A particle \(P\) is moving in a circle of radius 2 m . At time \(t\) seconds, its velocity is \(( t - 1 ) ^ { 2 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\). At a particular time \(T\) seconds, where \(T > 0\), the magnitude of the radial component of the acceleration of \(P\) is \(8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Find the magnitude of the transverse component of the acceleration of \(P\) at this instant.
[0pt] [5]
\includegraphics[max width=\textwidth, alt={}, center]{0f39ff02-a4fc-49ce-b87e-f70bef5a58b6-04_591_805_262_671} A uniform square lamina \(A B C D\) of side \(4 a\) and weight \(W\) rests in a vertical plane with the edge \(A B\) inclined at an angle \(\theta\) to the horizontal, where \(\tan \theta = \frac { 1 } { 3 }\). The vertex \(B\) is in contact with a rough horizontal surface for which the coefficient of friction is \(\mu\). The lamina is supported by a smooth peg at the point \(E\) on \(A B\), where \(B E = 3 a\) (see diagram).
  1. Find expressions in terms of \(W\) for the normal reaction forces at \(E\) and \(B\).
  2. Given that the lamina is about to slip, find the value of \(\mu\).
Question 4
View details
4 A particle \(P\) of mass \(m\) is attached to one end of a light inextensible string of length \(a\). The other end of the string is attached to a fixed point \(O\) and \(P\) is held with the string taut and horizontal. The particle \(P\) is projected vertically downwards with speed \(\sqrt { } ( 2 a g )\) so that it begins to move along a circular path. The string becomes slack when \(O P\) makes an angle \(\theta\) with the upward vertical through \(O\).
  1. Show that \(\cos \theta = \frac { 2 } { 3 }\).
  2. Find the greatest height, above the horizontal through \(O\), reached by \(P\) in its subsequent motion.
    \includegraphics[max width=\textwidth, alt={}, center]{0f39ff02-a4fc-49ce-b87e-f70bef5a58b6-10_1049_744_260_696} A thin uniform \(\operatorname { rod } A B\) has mass \(\lambda M\) and length \(2 a\). The end \(A\) of the rod is rigidly attached to the surface of a uniform hollow sphere (spherical shell) with centre \(O\), mass \(3 M\) and radius \(a\). The end \(B\) of the rod is rigidly attached to the surface of a uniform solid sphere with centre \(C\), mass \(5 M\) and radius \(a\). The rod lies along the line joining the centres of the spheres, so that \(C B A O\) is a straight line. The horizontal axis \(L\) is perpendicular to the rod and passes through the point of the rod that is a distance \(\frac { 1 } { 2 } a\) from \(B\) (see diagram). The object consisting of the rod and the two spheres can rotate freely about \(L\).