- A light elastic string has natural length \(2 a\) and modulus of elasticity \(2 m g\). One end of the string is attached to a fixed point \(A\) on a horizontal ceiling. The other end is attached to a particle \(P\) of mass \(m\).
The particle \(P\) hangs in equilibrium at the point \(E\), where \(A E = 3 a\).
The particle \(P\) is then projected vertically downwards from \(E\) with speed \(\frac { 3 } { 2 } \sqrt { a g }\)
Air resistance is assumed to be negligible.
Find the elastic energy stored in the string, when \(P\) first comes to instantaneous rest. Give your answer in the form kmga, where \(k\) is a constant to be found.