CAIE FP2 (Further Pure Mathematics 2) 2017 November

Question 4
View details
4
\includegraphics[max width=\textwidth, alt={}, center]{2ab1a594-6c37-4c78-b53c-33c13bf6eb21-06_465_663_262_742} A small ring \(P\) of weight \(W\) is free to slide on a rough horizontal wire, one end of which is attached to a vertical wall at \(Q\). The end \(A\) of a thin uniform \(\operatorname { rod } A B\) of length \(2 a\) and weight \(\frac { 5 } { 2 } W\) is freely hinged to the wall at the point \(A\) which is a distance \(a\) vertically below \(Q\). A light elastic string of natural length \(2 a\) has one end attached to the ring \(P\) and the other end attached to the rod at \(B\). The string is at right angles to the rod and \(A , B , P\) and \(Q\) lie in a vertical plane. The system is in limiting equilibrium with \(A B\) making an angle \(\theta\) with the horizontal, where \(\sin \theta = \frac { 3 } { 5 }\) (see diagram).
  1. Find the tension in the string in terms of \(W\).
  2. Find the coefficient of friction between the ring and the wire.
  3. Find the magnitude of the resultant force on the rod at the hinge in terms of \(W\).
  4. Find the modulus of elasticity of the string in terms of \(W\).
    \includegraphics[max width=\textwidth, alt={}, center]{2ab1a594-6c37-4c78-b53c-33c13bf6eb21-08_862_698_260_721} A uniform picture frame of mass \(m\) is made by removing a rectangular lamina \(E F G H\) in which \(E F = 4 a\) and \(F G = 2 a\) from a larger rectangular lamina \(A B C D\) in which \(A B = 6 a\) and \(B C = 4 a\). The side \(E F\) is parallel to the side \(A B\). The point of intersection of the diagonals \(A C\) and \(B D\) coincides with the point of intersection of the diagonals \(E G\) and \(F H\). One end of a light inextensible string of length \(10 a\) is attached to \(A\) and the other end is attached to \(B\). The frame is suspended from the mid-point \(O\) of the string. A small object of mass \(\frac { 11 } { 12 } m\) is fixed to the mid-point of \(A B\) (see diagram).
Question 11 EITHER
View details
\includegraphics[max width=\textwidth, alt={}]{2ab1a594-6c37-4c78-b53c-33c13bf6eb21-18_552_588_438_776}
A particle \(P\) of mass \(m\) is free to move on the smooth inner surface of a fixed hollow sphere of radius \(a\). The centre of the sphere is \(O\). The points \(A\) and \(A ^ { \prime }\) are on the inner surface of the sphere, on opposite sides of the vertical through \(O\); the radius \(O A\) makes an angle \(\alpha\) with the downward vertical and the radius \(O A ^ { \prime }\) makes an angle \(\beta\) with the upward vertical. The point \(B\) is on the inner surface of the sphere, vertically below \(O\). The point \(B ^ { \prime }\) is on the inner surface of the sphere and such that \(O B ^ { \prime }\) makes an angle \(2 \beta\) with the upward vertical through \(O\) (see diagram). It is given that \(\cos \alpha = \frac { 1 } { 16 }\).
  1. \(P\) is projected from \(A\) with speed \(u\) along the surface of the sphere downwards towards \(B\). Subsequently it loses contact with the sphere at \(A ^ { \prime }\). Show that \(u ^ { 2 } = \frac { 1 } { 8 } a g ( 1 + 24 \cos \beta )\).
  2. \(P\) is now projected from \(B\) with speed \(u\) along the surface of the sphere towards \(B ^ { \prime }\). Subsequently it loses contact with the sphere at \(B ^ { \prime }\). Find \(\cos \beta\).
  3. In part (i), the reaction of the sphere on \(P\) when it is initially projected at \(A\) is \(R\). Find \(R\) in terms of \(m\) and \(g\).