\includegraphics[max width=\textwidth, alt={}]{a8e37fb1-14c7-4004-b186-d607878e200d-5_604_609_434_769}
An object is formed by attaching a thin uniform rod \(P Q\) to a uniform rectangular lamina \(A B C D\). The lamina has mass \(m\), and \(A B = D C = 6 a , B C = A D = 3 a\). The rod has mass \(M\) and length \(3 a\). The end \(P\) of the rod is attached to the mid-point of \(A B\). The rod is perpendicular to \(A B\) and in the plane of the lamina (see diagram). Show that the moment of inertia of the object about a smooth horizontal axis \(l _ { 1 }\), through \(Q\) and perpendicular to the plane of the lamina, is \(3 ( 8 m + M ) a ^ { 2 }\).
Show that the moment of inertia of the object about a smooth horizontal axis \(l _ { 2 }\), through the mid-point of \(P Q\) and perpendicular to the plane of the lamina, is \(\frac { 3 } { 4 } ( 17 m + M ) a ^ { 2 }\).
Find expressions for the periods of small oscillations of the object about the axes \(l _ { 1 }\) and \(l _ { 2 }\), and verify that these periods are equal when \(m = M\).