CAIE FP2 (Further Pure Mathematics 2) 2015 November

Question 1
View details
1
\includegraphics[max width=\textwidth, alt={}, center]{27d3ee31-7c6e-4451-9c3d-aa4cfc0fdb22-2_744_504_255_824} A uniform ladder \(A B\), of length \(3 a\) and weight \(W\), rests with the end \(A\) in contact with smooth horizontal ground and the end \(B\) against a smooth vertical wall. One end of a light inextensible rope is attached to the ladder at the point \(C\), where \(A C = a\). The other end of the rope is fixed to the point \(D\) at the base of the wall and the rope \(D C\) is in the same vertical plane as the ladder \(A B\). The ladder rests in equilibrium in a vertical plane perpendicular to the wall, with the ladder making an angle \(\theta\) with the horizontal and the rope making an angle \(\alpha\) with the horizontal (see diagram). It is given that \(\tan \theta = 2 \tan \alpha\). Find, in terms of \(W\) and \(\alpha\), the tension in the rope and the magnitudes of the forces acting on the ladder at \(A\) and at \(B\).
Question 8
View details
8 The number of goals scored by a certain football team was recorded for each of 100 matches, and the results are summarised in the following table.
Number of goals0123456 or more
Frequency121631251330
Fit a Poisson distribution to the data, and test its goodness of fit at the 5\% significance level.
Question 10 EITHER
View details
\includegraphics[max width=\textwidth, alt={}]{27d3ee31-7c6e-4451-9c3d-aa4cfc0fdb22-5_604_609_434_769}
An object is formed by attaching a thin uniform rod \(P Q\) to a uniform rectangular lamina \(A B C D\). The lamina has mass \(m\), and \(A B = D C = 6 a , B C = A D = 3 a\). The rod has mass \(M\) and length \(3 a\). The end \(P\) of the rod is attached to the mid-point of \(A B\). The rod is perpendicular to \(A B\) and in the plane of the lamina (see diagram). Show that the moment of inertia of the object about a smooth horizontal axis \(l _ { 1 }\), through \(Q\) and perpendicular to the plane of the lamina, is \(3 ( 8 m + M ) a ^ { 2 }\). Show that the moment of inertia of the object about a smooth horizontal axis \(l _ { 2 }\), through the mid-point of \(P Q\) and perpendicular to the plane of the lamina, is \(\frac { 3 } { 4 } ( 17 m + M ) a ^ { 2 }\). Find expressions for the periods of small oscillations of the object about the axes \(l _ { 1 }\) and \(l _ { 2 }\), and verify that these periods are equal when \(m = M\).