Edexcel CP1 (Core Pure 1) Specimen

Question 1
View details
  1. Prove that
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( r + 1 ) ( r + 3 ) } = \frac { n ( a n + b ) } { 12 ( n + 2 ) ( n + 3 ) }$$ where \(a\) and \(b\) are constants to be found.
Question 2
View details
  1. Prove by induction that for all positive integers \(n\),
$$f ( n ) = 2 ^ { 3 n + 1 } + 3 \left( 5 ^ { 2 n + 1 } \right)$$ is divisible by 17
Question 3
View details
3. $$\mathrm { f } ( z ) = z ^ { 4 } + a z ^ { 3 } + 6 z ^ { 2 } + b z + 65$$ where \(a\) and \(b\) are real constants.
Given that \(z = 3 + 2 \mathbf { i }\) is a root of the equation \(\mathrm { f } ( z ) = 0\), show the roots of \(\mathrm { f } ( z ) = 0\) on a single Argand diagram.
Question 4
View details
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3b36bdc3-a68d-4982-bf23-f780773df5cc-08_492_1063_214_502} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve \(C\) shown in Figure 1 has polar equation $$r = 4 + \cos 2 \theta \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 }$$ At the point \(A\) on \(C\), the value of \(r\) is \(\frac { 9 } { 2 }\)
The point \(N\) lies on the initial line and \(A N\) is perpendicular to the initial line.
The finite region \(R\), shown shaded in Figure 1, is bounded by the curve \(C\), the initial line and the line \(A N\). Find the exact area of the shaded region \(R\), giving your answer in the form \(p \pi + q \sqrt { 3 }\) where \(p\) and \(q\) are rational numbers to be found.
Question 5
View details
  1. A pond initially contains 1000 litres of unpolluted water.
The pond is leaking at a constant rate of 20 litres per day.
It is suspected that contaminated water flows into the pond at a constant rate of 25 litres per day and that the contaminated water contains 2 grams of pollutant in every litre of water. It is assumed that the pollutant instantly dissolves throughout the pond upon entry.
Given that there are \(x\) grams of the pollutant in the pond after \(t\) days,
  1. show that the situation can be modelled by the differential equation, $$\frac { \mathrm { d } x } { \mathrm {~d} t } = 50 - \frac { 4 x } { 200 + t }$$
  2. Hence find the number of grams of pollutant in the pond after 8 days.
  3. Explain how the model could be refined.
Question 6
View details
6. $$\mathrm { f } ( x ) = \frac { x + 2 } { x ^ { 2 } + 9 }$$
  1. Show that $$\int \mathrm { f } ( x ) \mathrm { d } x = A \ln \left( x ^ { 2 } + 9 \right) + B \arctan \left( \frac { x } { 3 } \right) + c$$ where \(c\) is an arbitrary constant and \(A\) and \(B\) are constants to be found.
  2. Hence show that the mean value of \(\mathrm { f } ( x )\) over the interval \([ 0,3 ]\) is $$\frac { 1 } { 6 } \ln 2 + \frac { 1 } { 18 } \pi$$
  3. Use the answer to part (b) to find the mean value, over the interval \([ 0,3 ]\), of $$\mathrm { f } ( x ) + \ln k$$ where \(k\) is a positive constant, giving your answer in the form \(p + \frac { 1 } { 6 } \ln q\), where \(p\) and \(q\) are constants and \(q\) is in terms of \(k\).
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3b36bdc3-a68d-4982-bf23-f780773df5cc-14_259_327_214_868} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows the image of a gold pendant which has height 2 cm . The pendant is modelled by a solid of revolution of a curve \(C\) about the \(y\)-axis. The curve \(C\) has parametric equations $$x = \cos \theta + \frac { 1 } { 2 } \sin 2 \theta , \quad y = - ( 1 + \sin \theta ) \quad 0 \leqslant \theta \leqslant 2 \pi$$
  1. Show that a Cartesian equation of the curve \(C\) is $$x ^ { 2 } = - \left( y ^ { 4 } + 2 y ^ { 3 } \right)$$
  2. Hence, using the model, find, in \(\mathrm { cm } ^ { 3 }\), the volume of the pendant.
Question 8
View details
  1. The line \(l _ { 1 }\) has equation \(\frac { x - 2 } { 4 } = \frac { y - 4 } { - 2 } = \frac { z + 6 } { 1 }\)
The plane \(\Pi\) has equation \(x - 2 y + z = 6\)
The line \(l _ { 2 }\) is the reflection of the line \(l _ { 1 }\) in the plane \(\Pi\).
Find a vector equation of the line \(l _ { 2 }\)
Question 9
View details
  1. A company plans to build a new fairground ride. The ride will consist of a capsule that will hold the passengers and the capsule will be attached to a tall tower. The capsule is to be released from rest from a point half way up the tower and then made to oscillate in a vertical line.
The vertical displacement, \(x\) metres, of the top of the capsule below its initial position at time \(t\) seconds is modelled by the differential equation, $$m \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = 200 \cos t , \quad t \geqslant 0$$ where \(m\) is the mass of the capsule including its passengers, in thousands of kilograms.
The maximum permissible weight for the capsule, including its passengers, is 30000 N .
Taking the value of \(g\) to be \(10 \mathrm {~ms} ^ { - 2 }\) and assuming the capsule is at its maximum permissible weight,
    1. explain why the value of \(m\) is 3
    2. show that a particular solution to the differential equation is $$x = 40 \sin t - 20 \cos t$$
    3. hence find the general solution of the differential equation.
  1. Using the model, find, to the nearest metre, the vertical distance of the top of the capsule from its initial position, 9 seconds after it is released.